Benutzerspezifische Werkzeuge
:: Universität » Fakultät » Fachbereich :: Startseite Members Tatjana Eisner
Artikelaktionen

Tatjana Eisner

Eine Ebene höher
Dienstadresse
Prof. Dr. Tanja Eisner
Mathematisches Institut
Auf der Morgenstelle 10
72076 Tübingen
Germany
Telefon +49-(0)7071-29-73243
E-Mail
Externe Webseite http://www.math.uni-leipzig.de/~eisner/


Research Interests

  • functional analysis (semigroup theory, operator theory)
  • ergodic theory (ergodic theorems, connection with number theory)
  • complex analysis (location of zeros of entire functions)

Books

Operator Theoretic Aspects of Ergodic Theory Operator Theoretic Aspects of Ergodic Theory
Graduate Texts in Mathematics. Springer, to appear, 2015.

[ Link zu Springer ]

 Stability of Operators and Operator Semigroups Stability of Operators and Operator Semigroups
Operator Theory: Advances and Applications, Vol. 209. Birkhäuser Verlag, Basel, 2010. 204 pp.

Papers

  • Nilsequences and ergodic averages along primes, preprint. [arXiv]
  • (with Dávid Kunszenti-Kovács) On the pointwise entangled ergodic theorem, submitted. [arXiv]
  • A polynomial version of Sarnak's conjecture, C. R. Math. Acad. Sci. Paris 353 (2015), 569-572. [arXiv
  • (with Ben Krause) (Uniform) convergence of twisted ergodic averages, Ergodic Theory Dynam. Systems, to appear. [arXiv]
  • Linear sequences and weighted ergodic theorems, Abstr. Appl. Anal. 2013, Art. ID 815726. [arXiv]
  • (with Pavel Zorin-Kranich) Uniformity in the Wiener-Wintner theorem for nilsequences, Discrete Contin. Dyn. Syst. 33 (2013) 3497-3516. [arXiv]
  • (with Tamás Mátrai) On typical properties of Hilbert space operators, Israel J. Math. 195 (2013), 247-281. [arXiv]
  • Rigidity of contractions on Hilbert spaces. [arXiv]
  • (with Dávid Kunszenti-Kovács) On the entangled ergodic theorem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) XII (2013), 141-156. [arXiv]
  • (with Terence Tao) Large values of the Gowers-Host-Kra seminorms, J. Anal. Math. 117 (2012), 133-186. [arXiv]
  • (with Sophie Grivaux) Hilbertian Jamison sequences and rigid dynamical systems, J. Funct. Anal. 261 (2011), 2013-2052. [arXiv]
  • (with Tim Austin and Terence Tao) Nonconventional ergodic averages and multiple recurrence for von Neumann dynamical systems, Pacific J. Math. 250 (2011), 1-60. [arXiv]
  • A "typical" contraction is unitary, Enseign. Math. (2) 56 (2010), 403-410. [pdf-file]
  • (with András Serény) On the weak analogue of the Trotter-Kato theorem, Taiwanese J. Math. 14 (2010), 1411-1416. [pdf-file]
  • Embedding operators into strongly continuous semigroups, Arch. Math. (Basel) 92 (2009), 451-460. [pdf-file]
  • (with András Serény) Category theorems for stable semigroups, Ergodic Theory Dynamical Systems 29 (2009), 487-494. [pdf-file]
  • (with Hans Zwart) The growth of a C0-semigroup characterised by its cogenerator, J. Evol. Equ. 8 (2008), 749-764. [pdf-file]
  • (with András Serény) Category theorems for stable operators on Hilbert spaces, Acta Sci. Math. (Szeged) 74 (2008), 259-270. [pdf-file]
  • (with András Bátkai and Yuri Latushkin) The spectral mapping property of delay semigroups, Compl. Anal. Oper. Theory 2 (2008), 273-283. [pdf-file]
  • (with Bálint Farkas) Weak stability of orbits of C0-semigroups on Banach spaces. In H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds), Functional Analysis and Evolution Equations. The Günter Lumer Volume (2007), 201-208. [pdf-file]
  • (with Hans Zwart) A note on polynomially growing C0-semigroups, Semigroup Forum 75 (2007), 438-445. [pdf-file]
  • (with Bálint Farkas, Rainer Nagel and András Serény) Weakly and almost weakly stable C0-semigroups, Int. J. Dyn. Syst. Differ. Equ. 1 (2007), 44-57. [pdf-file]
  • (with Hans Zwart) Continuous-time Kreiss resolvent condition on infinite-dimensional spaces, Math. Comp. 75 (2006), 1971-1985. [pdf-file]
  • Polynomially bounded semigroups, Semigroup Forum 70 (2005), 118-126. [pdf-file] [erratum]
  • (with Olga M. Katkova and Anna M. Vishnyakova) On entire functions having Taylor sections with only real zeros, Mat. Fiz. Anal. Geom. 11 (2004), 449-469.
  • (with Olga M. Katkova and Anna M. Vishnyakova) On power series having sections with only real zeros, Comput. Methods Funct. Theory 3 (2003), 425-441.
  • On variation preserving operators, Mat. Fiz. Anal. Geom. 10 (2003), 94-105.

Interests

  • painting, tennis
« Februar 2016 »
So Mo Di Mi Do Fr Sa
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29
 

Powered by Plone CMS, the Open Source Content Management System

Diese Website erfüllt die folgenden Standards: