Benutzerspezifische Werkzeuge
:: Universität » Fakultät » Fachbereich :: Startseite Members Rainer Nagel

Rainer Nagel

Eine Ebene höher
Prof. Dr. Rainer Nagel
Mathematisches Institut
Auf der Morgenstelle 10
72076 Tübingen
Zimmer C6P05
Telefon +49-(0)7071-29-73242
Fax +49-(0)7071-29-5173


jeweils dienstags und donnerstags


  1. Chef der AG Funktionalanalysis Tübingen und des AGFA-TRI-TEAM
  2. Finisher des Empfingen Triathlon


A Short Course on Operator Semigroups
K. Engel, R. Nagel
A Short Course on Operator Semigroups
Universitext. Springer-Verlag, New York, Berlin, Heidelberg, 2006.

[ A Short Course (1.8 MB) ]

Functional Analytic Methods for Evolution Equations
M. Ianelli, R. Nagel, S. Piazzera (eds.)
Functional Analytic Methods for Evolution Equations
Lecture Notes in Mathematics, 1855. Springer-Verlag, 2004.

Evolution Equations
G. R. Goldstein, R. Nagel, S. Romanelli (eds.)
Evolution Equations
234. Dekker Series of Lecture Notes, 2002.

One-Parameter Semigroups for Linear Evolution Equations
K. Engel, R. Nagel
One-Parameter Semigroups for Linear Evolution Equations
Graduate texts in mathematics, 194. Springer-Verlag, New York, Berlin, Heidelberg, 1999.

[ engel-nagel_one-parameter-semigroups.pdf (4.8 MB) ]

Ergodic Theory in the Perspective of Functional Analysis Ergodic Theory in the Perspective of Functional Analysis
unveröffentlicht, 1987.

[ book (10.4 MB) ]

One-parameter Semigroups of Positive Operators
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. Lotz, U. Moustakas, R. Nagel, F. Neubrander, U. Schlotterbeck
One-parameter Semigroups of Positive Operators
Springer, 1986.

[ One-parameter Semigroups of Positive Operators (9.7 MB) ]

Key Publications

List of Publications: publicat.pdf (127.2 kB)

  1. R. Nagel (ed): One-parameter Semigroups of Positive Operators. Lecture Notes Math 1184, Springer-Verlag 1986.
  2. R. Nagel: Towards a "matrix theory" for unbounded operator matrices. Math. Z., 201, 57-68 (1989).
  3. R. Nagel: Order in pure and applied functional analysis. Atti Sem. Mat. Fis. Univ. Modena 39, 87-101 (1991).
  4. R. Nagel, F. Räbiger: Superstable operators on Banach spaces. Israel J. Math. 81, 213-226 (1993).
  5. R. Nagel: Semigroup methods for non-autonomous Cauchy problems. In: G. Ferreyra, G. Ruiz Goldstein, F. Neubrander (eds.): Evolution Equations. Lect. Notes Pure Appl. Math. 168, 301-316 (1995).
  6. R. Nagel, G. Nickel, S. Romanelli: Identification of extrapolation spaces for unbounded operators. Quaestiones Mathematicae 19, 83-100 (1996).
  7. R. Nagel, E. Sinestrari: Nonlinear hyperbolic Volterra integrodifferential equations. Nonlinear Analysis 27, No. 2, 167-186 (1996).
  8. R. Nagel: Characteristic equations for the spectrum of generators. Ann. Scuola Sup. Pisa, Serie IV, 24, Fasc. 4, 703-717 (1997).
  9. R. Nagel, J. Poland: The critical spectrum of a strongly continuous semigroup. Advances Math. 152 , 120-133 (2000)
  10. S. Brendle, R. Nagel, J. Poland: On the spectral mapping theorem for perturbed strongly continuous semigroups. Archiv Math. 74 , 365-378 (2000)
  11. M. Blake, S. Brendle, R. Nagel: On the structure of the critical spectrum of strongly continuous semigroups. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), 55-65, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001.
  12. S. Brendle, R. Nagel: PFDE with nonautonomous past. Discrete Contin. Dyn. Syst. 8, 953-966 (2002).
  13. R. Nagel, G. Nickel: Wellposedness for nonautonomous abstract Cauchy problems. Evolution equations, semigroups and functional analysis (Milano, 2000), 279--293, Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002.
  14. V. Casarino, K-J. Engel, R. Nagel, G. Nickel: A semigroup approach to boundary feedback systems. Integral Equations Operator Theory 47, 289--306 (2003).
  15. M. Kramer, D. Mugnolo, R. Nagel: Theory and applications of one-sided coupled operator matrices. Conf. Sem. Mat. Univ. Bari 283 (2002), 1-29.
  16. Jin Liang, R. Nagel, Ti-Jun Xiao:Nonautonomous heat equations with dynamic boundary conditions. J. Evolution Equations, J. Evolution Equations 3 (2003), 321-331.
  17. Nguyen Thieu Huy, R. Nagel: Linear neutral partial differential equations, a semigroup approach. Int. J. Math. Math. Sci. 23 (2003), 1433-1446.
  18. R. Nagel: Some open problems in the theory of C0-semigroups, in: S. Romanelli et al.: Interplay between C0-semigroups and PDEs; Theory and Applications. Bari 2004, 193-196.
  19. R. Nagel, E. Sinestrari: The Miller scheme in semigroup theory. Advances Diff. Equ. 9 (2004), 387-414.
  20. R. Nagel, E. Sinestrari: Extrapolation spaces and minimal regularity for evolution equations.J. Evol. Equations 6 (2006), 287-303.
  21. K.-J. Engel, M. Kramar, R. Nagel, E. Sikolya: Vertex control of flows in networks. NHM 3 (2008), 709-722.
  22. T. Eisner, B. Farkas, R. Nagel, A. Sereny: Weakly and almost weakly stable C0-semigroups. Int. J. Dyn. Syst. Diff. Equ. 1 (2007), 44-57.
  23. J. Lian, R. Nagel, T. Xiao: Approximation theorems for the propagators of higher order abstract Cauchy problems. Trans. Amer. Math. Soc 360 (2008), 1723-1739.
  24. V. Keicher, R. Nagel: Positive semigroups behave asymptotically as rotation groups. Positivity 12 (2008), 93-103.
  25. K.-J. Engel, M. Kramar Fijavz, B. Klöss, R. Nagel and E. Sikolya: Maximal Controllability for Boundary Control Problems, Applied Mathematics and Optimization 62 (2010), 205-227

Click here to see the complete list of publications.

Besondere Interessen

Der andere Rainer Nagel
Um den anderen Rainer Nagel zu sehen, klicken Sie auf das Bild...
« Mai 2016 »
So Mo Di Mi Do Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Powered by Plone CMS, the Open Source Content Management System

Diese Website erfüllt die folgenden Standards: